Emulation based analysis
using binary instrumentation

Application on CTF

POSTELOH

SPEAKERS

Myunghun Cha

From Republic of Korea

POSTECH senior student majoring CSE
Team Leader of PLUS

CODEGATE 2009 Hacking Contest 3™ place
DEFCON 2009 CTF 3" place

DEFCON 2011 CTF 8t place

Many hacking contest experience

Jinsuk Park

* POSTECH sophomore majoring ME
e Team member of PLUS

PLUS

POSTECH Laboratory for UNIX Security
Found in 1992

Researching on various security issues
Participating in lots of hacking contests
Participated in DEFCON CTF three times
— 2009 (3)
— 2010 (3
— 2011 (8th)
— 2012

DEFCON CTF

CTF Basic Rule

 CTF : Capture The Flag
* Each team is given vulnerable server
* Vulnerable daemons are running on the server

a h

CTF Daemon

blus#t nc localhost 6391
resh Tomatoest! The real scoop on the movie poop?
MALLOC
MALLOC
MALLOC
MALLOC
MALLOC
MALLOC
MALLOC
MALLOC
MALLOC
MALLOC

Please to be making the comments?

this is comment
MALLUC

anks, mi tink!?
Civimig> m

1ich of these baller babies needs to be replaced?
psdf

eplacing this one:

1wt _uu wanna replace it wit?
hsdf asdf

ivimig> |

e O O ; ©® IDA - /Users/CHA/Desktop/bins/tomato
= E ey Dy BB 3w @ @ of gf @ Fy# m X p @ O [Nodebugger s @ B A o hodd &aRERNL BELD

(]
»

T

[#] Functions window (o %) @O Hex View-A @[A] Structures oE Enums CXE] Imports o= Exports |
Lt
Function name v *
_initgroups =
==l loc_B049BEC: ; int
___assert mov dword ptr [esp+8], 0
_setresgid mov dword ptr [esp+4], offset aCVMQ ; "c|v|m|g> "
! mov [esp], ebx ; int
b call sub_80494D0
_srand C
_calloc 'K 3
_rand [
_setresuid
s loc_8049BD4: ; char
_s:gnal. mov dword ptr [esp+0(':h], 0ah
_getegid mov dword ptr [esp+8], 1FFh ; int
open mov [espt+4], edi ; int
- mov [esp], ebx ; fd
_send call sub_8048F80
exit test eax, eax
_maIIoc jle short loc_8049C53
_memcpy Ml ¥ I ¥
_bind "] "I
_free mov byte ptr [ebp+eax+var 20C],
m sl Lo I g
" jle short loc_8049C37 test esi, esi
_atexit jnz short loc_8049C75
_strlen I I 1
_geteuid [4 ¥
. w53 [)
= ‘me L 804937 add esp, 21Ch
oc_! H xor eax, eax
. movzx eax, byte ptr [ebp+var 20C]) pop ebx
Line 43 of 161 i y sub eax, 61h pop esi
. cmp al, 15h ; switch 22 cases pop edi
A Graph overview ® 0 ja 10::_8049358 : jumptable 08049C4C default casefl ([pop ebp
retn
— "I
l—r%‘— movzx eax, al
. jmp ds:off_ 8C
100.00% (845.777) (347.140) 00001CDO '08049CDO: sub 8049810+1C0O 4
Output window (5 x]

kExecuting tfunction 'main’...

Compiling file '/Applications/idag.app/Contents/MacOS/idc/onload.idc'...
Executing function 'OnLoad'...

IDA is aralysing the input file...

You may start to explore the input file right now.

Python

Load a new file or database

Scoring

* There’s a key file for each daemon which is
changed periodically

* You should read or write the key file to get a
score

* |t simulates information stealling and
corruption in real world

10

CTF Network

Given two lan cables

11

CTF Network

CTF Summary

 We can attack over the wire
* We can sniff, suspect, or drop packet

 We can attack analyzing binary
or using other teams’ exploit

What do | want to do?

| want to detect attacks

* | want to analyze vulnerability easily using
other teams’ attack

e Then... how?

EMULATION BASED ANALYSIS

Emulation Based Analysis

 We can detect bug following specific patterns
— Stack boundary check
— memcpy without string length check
— EIP address check
— Format string from user input

e Verification user input is much more easier
than finding hidden bug

* Dynamic analysis is easier than static analysis

Instrumentation?

in-stru-men-ta-tion @) noun

\,In(t)-stra-man-'t3-shan, - men-\

Definition of INSTRUMENTATION 3+1) [Lke

1 : the arrangement or composition of music for instruments
especially for a band or orchestra

2 : the use or application of instruments (as for observation,
measurement, or control)

3 :instruments for a particular purpose; also : a selection or
arrangement of instruments

Dynamic Binary Instrumentation

e Ability to monitor or
measure the level of a
program's performance,
to diagnose errors and
to write trace
information

Dynamic Binary Instrumentation

* A technique to analyze and modify the
behavior of a binary program by injecting
arbitrary code at arbitrary places while it is
executing

Usage

Simulation / Emulation
Performance Analysis
Program optimization
Bug detection
Correctness Checking
Call graphs

Memory Analysis

For hackers?

Fuzzing

Covert Debugging

Exploitable Vulnerability Detection
Automated Reverse Engineering
Bypass Anti-Debuggers
Automated exploitation
Automated unpacking

Pin
Valgrind
DynamoRio
Etc.

DBI frameworks

Why valgrind?

* Valgrind runs on BSD but PIN does not
(which is DEFCON CTF Environment)

Valgrind : Introduction

* Valgrind Core

— DBI framework
— Simulated CPU

* Valgrind tool
— Written in C using Valgrind framework
— Used as Plug-ins for Valgrind

e Valgrind Core + tool plug-in = Valgrind tool

Valgrind : Tools

Memcheck: check memory management of
the binary executable

Cachegrind: cache profiling
Helgrind: Data races conditions detection
Massif: Heap profiler

User written tool

usage: valgrind --tool=<toolname> [options]
prog-and-args

Valgrind : How it works

1. Disassembly

~

~

2. Instrumentation

3. Assembly

-

Machine
code(x86)

N

Intermediate
Language(IR)

IR
N2

Instrumented IR

- _/

Instrumented IR

NG

Machine
code(x86)

4)

VEX IR(Intermediate Representation)

e Valgrind’s binary translation mechanism

 VEX IR: machine independent intermediate
representation

* Translates a block of binary codes to simplified
VEX representation

VEX IR : Example

e addl %eax, %ebx :
— t3 = GET:132(0) # get %eax, a 32-bit integer
— 12 = GET:132(12) # get %ebx, a 32-bit integer
—t1 = Add32(t3,t2) # add|
— PUT(0) = t1 # put %eax

Valgrind : Overview

[Valgrind core]

+

L Executable Binary }

—>

-

.

VEX IR translation

~

_/

-

.

Valgrind tool

_/

l Instrumentation

DBI Result

~

Attack Detection Using Valgrind DBl Framework

CTFGRIND

What does it do?

* match registered execution patterns
* checks sensitive memory area overwriting
* marks execution flow using IDA Plug-in

Pattern 1: RET overwriting

 We can get the guest machine’s register
values

 We should protect our RET and stored EBP

1. Monitor every memory operation (Store)
2. Compare target address with SEBP
3. Output callstack

Pattern 2: GOT overwriting

e We can do in the same manner, because the
address of GOT is static in a binary

Pattern 3: Strcpy

* What if a bug comes from using library
function such as strcpy

1. We can compare the RET before the library
function call and after the call

2. There could be many vulnerable library
functions such as memcpy, strcpy, and scanf

Possible usage #1

Attach directly to running daemon
Prevent attack before exploitation

Stop the process when a danger is detected
Possible slow down

Possible usage #2

* Runs on a separated shadow machine

 When it detects attack, register the packet
pattern to firewall to prevent further attack

e Can’t defend the first attack

IDA Plugin

 CTFGRIND logs the call stack when the attack
detected

* |DA Plugin reads the file and marks the
execution path

* Helpful to analyze other teams’ exploit

DEMO

REFERENCE

Emulation-
based Security Testing for Formal Verification (B
ack Hat Europe 2009) — Bruno Luiz

Optimizing binary code produced by Valgrind —
Luis Veiga

Valgrind — Mario Sanchez, Cecilia Gonzalez
Hacking using Binary instrumentation — Gal Diskin

Valgrind: A Framework for Heavyweight Dynamic
Binary Instrumentation -
Nicholas Nethercote, Juliam Seward

Valgrind Technical Manual

S AFFL|CE

hoon0612 @postech.ac.kr
jinmel@postech.ac.kr

