POLISH OLYMPIAD IN INFORMATICS

The 7th Baltic Olympiad in Informatics
BOI 2001

Sopot, Poland
Tasks and Solutions

Edited by Marcin Kubica

WARSAW, 2001

POLISH OLYMPIAD IN INFORMATICS

The 7th Baltic Olympiad in Informatics
BOI 2001

Sopot, Poland
Tasks and Solutions

Edited by Marcin Kubica

WARSAW, 2001

Authors:

Marcin Kubica
Ville Leppénen
Adam Malinowski
Oleg Murk
Krzysztof Onak
Martins Opmanis
Mindaugas Plukas
Wolfgang Pohl
Ahto Truu

Piotr Sankowski
Marcin Sawicki
Marcin Stefaniak
Tomasz Waleh
Pawet Wolff

Proofreader: Weronika Walat
Volume editor: Marcin Kubica
Typesetting:

Krzysztof Onak
Tomasz Walenh

Sponsored by Polish Ministry of National Education.

ISBN 83-906301-8—4

Contents

Preface.o 5
BETCUTSION ... oo 7
BOx Of MiTTOTs « o oo oo e e e 13
Crack the Code e e e e e 17
POSEMATY .« oo 21
KGGRES « o o e e 25
Mars Mapsonno o e 29
TCIEPOTES . .o oo e e e e e e e 35
Bibliographyo 39

Marcin Kubica

Preface

Baltic Olympiad in Informatics (BOI) gathers the best teen-age programmers from countries surrounding the Baltic Sea.
The 7-th BOI was held in Sopot, Poland, June 16-21, 2001. Eight countries took part in the competition: Denmark,
Estonia, Finland, Germany, Latvia, Lithuania, Poland and Sweden. All of the countries, except Denmark and Poland,
were represented by 6 contestants. Denmark was represented by one and Poland by 12 contestants. BOI’2001 was
organized by Polish Olympiad in Informatics together with Prokom Software S.A., Combidata Poland Sp. z.0.0. and the
city of Sopot. More information about this competition, can be found at ww. i i . uni . wroc. pl / boi /.

The contest consisted of three sessions: a trial session and two competition sessions. During the trial session con-
testants had an occasion to become familiar with the software environment and to solve a warming up task ‘Excursion’.
During each of the competition sessions they had to solve three tasks within five hours of time: ‘Box of Mirrors’, ‘Crack
the Code’ and ‘Postman’ during the first session and ‘Knights’, ‘Mars Maps’ and ‘Teleports’ during the second one. Four
contestants were awarded gold medals, eight contestants were awarded silver medals and twelve contestants were awarded
bronze medals. The results are as follows:

e Gold medalists:

Martin Pettai Estonia Pawet Parys Poland
Michat Adamaszek Poland Krzysztof Kluczek Poland
o Silver medalists:
Daniel Jasper Germany Ivars Atteka Latvia
Tomasz Malesifski Poland Uldis Barbans Latvia
Karol Cwalina Poland Piotr Stanczyk Poland
Arkadiusz Pawlik Poland Tobias Polley Germany
e Bronze medalists:
Teemu Murtola Finland Hendrik Nigul Estonia
Michael Siepmann Germany Marcin Michalski Poland
Marek Zylak Poland Girts Folkmanis Latvia
Daniel Andersson Sweden Benjamin Dittes Germany
Viktor Medvedev Lithuania Kristo Tammeoja Estonia
Bjarke Roune Denmark Fredrik Jansson Finland

This booklet presents tasks from BOI’2001 together with the discussion of their solutions. Some more materials,
including test data used during the evaluation of solutions, can be found at ww. i i . uni . wroc. pl / boi /. It was prepared
for the contestants of various programming contests to help them in their exercises.

Marcin Kubica

Task by Solution description by
Mindaugas Plukas Marcin Stefaniak

Excursion

A group of travelers has an opportunity to visit several cities. Each traveler states two wishes on what city he/she does
want or does not want to visit. One wish expresses a will to visit or not to visit exactly one city. It is allowed that both
wishes of one traveler are the same or that they are opposite—i.e. I want to visit city A, and I do not want to visit city A.

Task

Your task is to write a program that:
e reads the travelers’ wishes from the input file €Xc.in,

o determines whether it is possible to form such a list of cities to be visited (the list can be empty), that at least one
wish of every traveler is satisfied,

e writes the list of cities to be visited to the output file €XC. out .

If there are several possible solutions, your program should output anyone of them.

Input

The first line of the input file €XC. 1 N contains two positive integers n and m (1 <n < 20000, 1 <m < 8000); n is the
number of travelers, and m is the number of cities. The travelers are numbered form 1 to n, and the cities are numbered
from 1 to m. Fach of the following n lines contains two nonzero integers, separated by single space. The i + 1-th line
contains numbers wj and wi' representing wishes of the i-th traveler, —m < wi,wi' <m, wi,wi' # 0. A positive number
means that the traveler wishes to visit that city, and a negative number means that the traveler does not wish to visit the
city specified by the absolute value of the number.

Output

Your program should write one nonnegative integer I, the number of cities to be visited in the first line of the output file
exc. out . In the second line of the file there should be written exactly l positive integers in the ascending order, representing
cities to be visited.

In case it is not possible to form such a list of cities, your program should write in the first and only line the word NO.

Example

For the input file €XC.in: the correct result is the output file €XC. out :
34 4

1 -2 1234

2 4

31

Solution

A bit of logic

In the task ‘Excursion’, the goal is to find such an excursion route—a subset of a given set of cities, that satisfies every
traveler. There is something special about the travelers’ wishes, namely, every wish is an alternative of exactly two
simple conditions, like ‘to visit the city’ or “not to visit the city’. We can easily express these wishes in the language of
propositional logic.

For example, the input file:

34
2

w N -
N

8 FExcursion
means that:
o there are 3 travelers and 4 cities,
o the first traveler wants to visit the 1-st city or not to visit the 2-nd city,

o the second traveler wants to visit the 2-nd city or the 4-th city,

the third traveler wants to visit the 3-rd city or the 1-st city.

Let us denote by a; the sentence ‘the excursion is to visit the city number i’. These are called variables, since their
logical values (whether they are true or false) are not fixed.
In our example, there are four variables a1, az, as,as. Now, the travelers’ conditions can be expressed by the following
formulae:
a; Vv —ap
a>Vag
azVvay

Since all the travelers are going to the same excursion, all of these conditions have to be satisfied together:
(a1 \Y ﬁaz) A\ (az \Y a4) A\ (a3 \Y al)

This formula is equivalent to the excursion problem from the example file. To solve the problem one should satisfy this
formula (assign logical values—true, false—to the variables, so that the formula is true), or show that there is no such
assignment (implying that the excursion is impossible).

In general, the input file can be rearranged and transformed into a logical formula, whose satisfaction is equivalent to
solving the excursion problem. The problem of satisfying a given logical formula is well known to be NP-complete'and
hardly ever is an NP-complete problem believed to be solvable in a polynomial time. Fortunately, the formula obtained in
this task is of a very special form:

(EVIZYA VIS AL AL VIZ)

where Ijl, I]-2 are called literals and each of them stands for some variable a; or negated variable —a;. The literals IJ-1 and

I]-2 correspond to the conditions of the j-th traveler. The formula is a conjunction of alternatives of exactly two literals.
Therefore it is said to be in the second conjunctive normal form, (i.e. 2-CNF).

We are particularly lucky that the tourists stated at most two conditions. If they were allowed to state three of them, the
alternatives in the formula would consist of three literals, hence the formula would not be in 2-CNF, but in 3-CNF form,
and it has been proven that satisfying 3-CNF formula is another NP-complete problem. That proof and more information
on NP-completeness can be found in [1]. However, the excursion problem is equivalent to satisfying a formula of 2-CNF
form, and we shall show that this problem can be solved in a polynomial, linear time.

Excursion and graphs

We shall consider an undirected graph G = (V, E) with vertices corresponding to all possible literals:
V = {aj,—~ai1,az,-ay,...,an, "an}
and edges connecting pairs of literals which appear in alternatives of the formula:

E={(1}13):i=12,...,m}

&)

The graph G for the example input.

1We consider here propositional logic (without quantifi ers and predicates, which would make things even worse).

FExcursion

Our goal is to select a subset W C V containing vertices corresponding to these literals which are true when the formula
is satisfied. For that, the following holds and must hold:

o (M) eitheraj € W, or —a; € W (exclusively), fori=1,2,...,n,
o (&) forany edge (u,v) cE,ucWorveW (i.e.uvv),

We say vertices a;, and —a; are opposite, because one and only one of them must belong to the set W.
Suppose (u,v) € E, or uVv. By laws of logic we obtain useful implications:

UVV < U=V < —V=U
We construct a directed graph G’ = (V,E’), whose edges represent these implications:
E'={(-u,v): (uv)€EV(v,u)€E}

We shall call this the inference graph, because it can be used to find which vertices one has to choose to the set W,
provided that some given vertex has already been chosen.

The inference graph has 2n vertices and 2m edges, where n is the number of cities and m denotes the number of
travelers (this differs from the task statement, but we shall stick here to the usual convention).

The example of inference graph G'. Edges of the original graph are dashed.

In our example, we can now clearly see, that if one adds the vertex —a4 to the set W, one must also include vertices as,
and consequently az, because these vertices can be reached from —ay4 through the edges of the inference graph.
Every W C V which is a correct solution of the problem must adhere to the inference graph, in such a way that:

() WweW A (W) EE)=VveW.

At the same time, any W that satisfies (<>) and (#), forms a correct solution to the excursion problem, since () < (&),
which is an obvious consequence of the way in which the graph G’ was constructed. Therefore it is enough to search for
aW C V adhering to the inference graph, and not contradicting the exclusiveness condition ().
Let us denote
Induced(w) = {v:w —" v},

where —* means that there is a path from w to v in the graph G’. The following property holds, since it is equivalent to
(©):

w e W = Induced(w) CW.

If a set Induced(w) contains two opposite vertices (which is not allowed in a solution), then we say that the vertex w is
troublesome.
Another graph which is useful in solving this problem is the conflict graph. For each (u,v) € E <= u Vv, by laws of
logic
UVV <= =(-UA-Y),

hence the vertices —u and —v are in conflict, and cannot be both present in the solution set W.

10 Ezxcursion

The confict graph for the example input. The edges of the graph G are dashed.

Simple algorithm

The following algorithm solves the problem:

1: W =0,

2: while W < n do

3: begin

4: let ¢ be a city, such that ¢c,—c ¢W;

5: if both ¢ and —c are troublesome then
6: solution does not exist, STOP

7: else

8: begin

9: let v be a non-troublesome vertex ¢ or —c;
10: W :=W UInduced(v);

11: end

12: end

—
@

The algorithm chooses a vertex accepting or rejecting a city, and then expands the set W by induced vertices. Notice
that cities that are not mentioned in any way in the set of induced vertices do not conflict with the cities that are. This is
the very key to the solution, as it allows to solve the problem without searching recursively the whole space of possible
solutions.

Independence property

Let U = Induced(v) and let M be such a set of vertices that neither they nor the vertices opposite to them are in the set U.
If the vertex v is not a troublesome one, then there is no edge in the conflict graph between U and M.

This fact might seem quite hard to see at first glance, but it is easy to show. Should a conflict happen between m € M
and u € U, then u — —m, so -m € Induced(u) C Induced(v) = U. But =m ¢ U by the definition of M.

As the result of the independence property, the algorithm, in each turn of the loop, searches for vertices in a similar
way, as it does in the beginning. Furthermore, any algorithm, which does not accept troublesome vertices and would not
accept a pair of opposite or conflicting vertices, eventually finds a correct solution.

Strongly connected components

The algorithm presented in section ‘Simple algorithm’ is not the fastest one. The time complexity of checking if a vertex
is troublesome may take time proportional to the size of the graph, so the overall time complexity is O(n* (n+m)). We
shall show a more efficient algorithm, which solves the problem by calculating strongly connected components of the
inference graph.

Some of the readers may be familiar with the concept of strongly connected components in a directed graph. We say
that two vertices u,v belong to the same strongly connected component, when there is a path from u to v as well as from
v to u. Certainly, being in the same strongly connected component is an equivalence relation, hence it divides the set of
vertices into disjoint groups. These groups are called, obviously, strongly connected components.

Strongly connected components of an inference graph have a useful property: for any component C C V, either
C CW, orCNW = 0. In other words, we cannot choose a component partially; we can only take all vertices from that
component, or none of them. Therefore we shall consider the graph of components G = (V¢,Ec), whose vertices are
strongly connected components of the graph G’, and edges are inherited from the graph in a natural way.

FEzxcursion 11

There is an algorithm calculating strongly connected components in a graph in a linear time in term of the size of the
graph, O(n+m). The algorithm is quite simple, but tricky. One can find detailed explanations in e.g. [1].

An example of strongly connected components in a graph.

Let us suppose for a while that there is a cycle in the graph of components, then we could easily see that all vertices in
that cycle should belong to the same component—an obvious contradiction. Hence, the graph of components is a directed
acyclic graph (DAG).

We shall sort topologically the DAG of components, so that we could browse its vertices in a not-descending order,
according to the graph of components. This can also be done in a linear time.

We say that we accept a component, when (while performing the algorithm) the component is chosen and included
to the set of true literals W. We also say that we reject a component, if we decide not to choose the component anyway

(perhaps due to some contradictions).

Note that rejecting a component entails rejecting all its ascendants in DAG G, and similarly accepting a component
leads to accepting all its descendants. In fact, the graph G is the graph of inductive reasoning, whereas the reversed graph
G{ can be viewed as the graph of deductive reasoning; these metaphors might explain the name ‘inference graph’.

Algorithm

The following are the main steps of the algorithm solving the problem:
1. read the input file and generate the inference graph G/,
2. find strongly connected components and the components graph G,
3. if there are two opposite vertices in a component, then reject this component and all its ascendants,
4. sort topologically the components, and process them in ascending order:

(a) if the current component has not been rejected, then accept it ,

(b) for each vertex in the accepted component reject the component containing the opposite vertex (and conse-
quently all its ascendants),

5. if exactly n vertices have been accepted, then they form a correct solution; otherwise solution does not exist.

Note that because of the topological ordering of components, each time we accept a component all of its descendants
have already been accepted (had one been rejected before, then the current component would have been rejected).

We shall show that this algorithm really solves the problem. It is easy to see that if half of the vertices are accepted,
then this set of vertices is a correct solution. Indeed, it does not contain any conflicts, because of rejecting components in
steps 3 and 4.b, and is consistent with the inference graph, as we have pointed out. What we have to show then, is that if
there exists a solution, then the algorithm will find one.

Notice that when a vertex is accepted the opposite one is rejected. As it was explained in section ‘Independence
property’, accepting a vertex is harmless provided that it is not troublesome. But all the troublesome vertices are rejected
in the step 3, and since we are processing components in ascending order, we are avoiding conflicts.

Therefore, from the independence property comes the correctness of the solution algorithm.

12 FExcursion

Other solutions

Naive solution

One could solve this problem by crude backtracking. In this algorithm, we consider a city i, which is yet neither accepted
nor rejected. We try to accept it and using the inference graph G’ we can find its descendant vertices, which are also
accepted. Meanwhile, we check if a contradiction has occurred. If so, we try the second option, namely rejecting the city.
In case of a successful try, we consider another city, and so on; if both decisions failed, we backtrack.

The time complexity of this algorithm is exponential, so it is a very slow solution.

Tests

The tests have been generated randomly for various number of cities and travelers, increasing gradually in order to
distinguish different solutions. The tests are grouped in order to detect programs answering always ‘NO’. (A program
could score points only for solving all tests in a group). The test group number 8 was especially designed to discern

non-linear solutions O((n+m) - m) from the linear ones.

No | No of travelers No of cities | Remarks

1 27 10

2 107 33

3 1010 100

4a 48 100 answer NO
4b 106 100

5a 257 333 answer NO
5b 3022 400

6a 829 1000

6b 1006 1000 answer NO
7 20000 8000

8a 15998 8000

8b 15998 8000

8c 16000 8000

Task by Solution description by
Martins Opmanis Piotr Sankowski

Box of Mirrors

Mathematician Andris likes different puzzles and one of his favorites is a covered box of mirrors. If we look at a horizontal
cross-section of such a box, we can see that its bottom part contains n X m square cells (n rows, and m columns). In each
cell there can be placed a mirror which is oriented diagonally from lower left corner to upper right corner. Both sides of
the mirror reflect light. At the box edges located at both ends of cell rows and columns there are gaps through which you
can light a beam into the box or a beam can come out of the box. Through each gap you can light a beam in only one
direction—perpendicular to the edge containing the gap. Therefore, a beam reflected from a mirror changes its direction
by 90deg. When the beam goes through empty cells, its direction doesn’t change. Gaps are numbered consecutively from
1to 2-(n+m), around the boz, counter-clockwise, starting from the gap on the left side of the upper left cell and going
downwards. Since the arrangement of mirrors in the box is not visible, the only way to determine it is by lighting beams
into some gaps and watching where the light comes out.

Task

Write program that:
e reads the size of the box and gaps describing beams coming in and out of the box from the input file boX.in,
e determines in which cells there are mirrors and which cells are empty,
e writes the result to the output file box. out .

If there are several possible solutions, your program should output anyone of them.

Input

First line of input file DOX. i N contains two positive integers: n (the number of cell rows, 1 <n < 100) and m (the number
of cell columns, 1 <m < 100) separated by a single space. Each of the following 2 - (n+m) lines contains one positive
integer. The number in the i + 1-th line denotes the number of the gap from which the light comes out if it is lightened
into gap number i.

Output

Your program should write to the output file bOX. oUt n lines, each of them containing m integers separated by single
spaces. The j-th number in the i-th line should be 1, if there is a mirror in the cell in the i-th row and j-th column of the
box, or it should be 0 if the cell is empty.

Example

For the input file box.in: the correct result is the output file boX. out :
23 010

9 011

7

10

14 Box of Mirrors

10 9 8
1 / 7
) / / 6
3 4 5
Solution

The solution of this problem is very easy, but as is often the case, it’s not so easy to find. The problem can be solved by
a greedy algorithm. A greedy algorithm might also be called a ‘single-minded’ algorithm, an algorithm that takes care of
only one thing. It performs a single procedure in a recipe over and over again until such a process cannot be continued
anymore. In every step it enlarges the solution by the best element or just by an element that fulfills some property. In
most cases such an algorithm doesn’t produce an optimal solution, but in some it does. Many such cases are described
by a matroid theory. For more information on this topic see [1]. The matroid theory provides a strict way of proving the
correctness of a greedy algorithm. One only has to check if every step satisfies some given conditions.

The correctness of the algorithm for this problem will be proved in a similar way. We will show that every step of the
algorithm will not hinder the following steps. Every step will consist of finding a track for one beam, and it will be done
in such a way that it won’t make it impossible to find tracks for other beams. Our algorithm will successively track beams
lighted into gaps with numbers 1,2,...,n+m. At the beginning the box will not contain any mirrors, they will be placed
where needed while tracking the beams. They will also be placed in such a way that the beam goes as much as possible
upwards, in order to not “disturb’ light beams going underneath. Let us consider the following algorithm to track beams:

1. Let x and y be the current column and row of the tracked beam. Let x” and y’ be the column and row of the gap
through which the beam should leave.

2. If x=x andy =y’ then stop.
3. If the beam goes vertically go to step 5.

4. If there is no mirror above the current position and x # x’ or y =/, then go one cell to the right: x :=x+ 1.
Otherwise place a mirror in cell (x,y) and go one cell upwards: y :=y — 1. Go to step 2.

5. If there is a mirror in the current cell, then go right: x := x4+ 1. Otherwise go up: y :=y— 1. Go to step 2.

In step 4 of the algorithm we go right if we are in the row in which there is the hole through which the beam should
leave, or we go up and place a mirror in the current cell if we are in the column in which there is the destination hole or
there is some mirror above, so we go as much as possible upwards.

The following pictures show how the first three beams are tracked for a box with 2 columns and 3 rows and light
beams 1 — 10,2 —8,3—9,4—6and5— 7.

Box of Mirrors

I_1_9_I |_1_9_| I_13_9_I
O T T,
2> 7 aJ 7 2/ 7
I I | |
-3> 6 3> 6 3> 6
L — L — L —
4 5 4 5 4 5
10 9 10 9 10 9
= " = " = "
1 8 1 8 1 8
| | |]
oA ATy
a# 6 3/ 6 3/ 6
L™ — 1 L™ — 1 L™ — 1
4 5 4 5 4 3
Example of how the algorithm works for a a box with 2 columns, 3 rows and light beams 1 — 10,2 — 8,3 — 9,4 — 6 and

5-7.

Note that, when a mirror is placed the light beam is reflected on the left side of the mirror (step 4 of the algorithm).
Other steps contain no requirements, in other words nothing may go wrong with them, they only track the beam. Consider
the condition in point 4. There are only two possible situations when the algorithm might produce incorrect solutions, both
are shown in the following picture. We track the beam and in a certain step it is in the row or column of the hole through
which it should leave, but the tracked beam cannot be lighted out through the proper hole (marked with A) because there
is a mirror in its way.

Incorrect situations. The beam should leave through gap A, but there isa mirror in its way.

Such situations cannot happen in our algorithm, because there must be already some other light beam reflected form
the left side of the mirror, and in the case shown on the left it has already left through this hole, but in our algorithm beams
leave only through correct holes, and two beams cannot be lighted out through the same hole. In the case on the right,
there already is some other beam going in this row, so it is impossible too.

Contestants’ Solutions

The results scored by the solutions of this problem were mostly either near maximum or not more than 20% of the
points. Contestants usually either came to the described solution and scored all points or they tried to implement some
backtracking algorithm which worked in an exponential time and passed mostly two smallest tests.

Tests

In this problem there are no special cases, and so there are no special test cases. All tests for this problem are random—in
a box of some size there were placed some mirrors at random positions. The main goal of the tests was to distinguish
between optimal solutions and exponential ones, and to check the correctness of the solutions.

15

Task by Solution description by

Oleg Miirk and Ahto Truu Pawet Wolff

Crack the Code

Cryptography is the science and technology of coding messages so that only the intended recipient can read them. Crypt-
analysis, on the other hand, is the science of breaking the codes. For this problem, assume you’re a cryptanalyst hired to
break open a series of encrypted messages captured in a police raid on the headquarters of the local mafia.

Your colleagues have already reverse engineered the encryption program (see Crack.pas or crack.c for the code),
and the only thing left to do is to reverse the algorithm and guess the key used to encrypt the files.

Along with the encrypted files, there are also some plaintext files that are believed to originate from the same source as
the encrypted files and thus have a similar structure in terms of language, word usage, etc.

Task

Your task is to decrypt the messages given and to save them in the specified files. You do not have to provide any
program—just the decrypted messages.

Input

You are given several data sets. They consist of files cran. * , where n is the number identifying the data set. Each data
set consists of the files:

e cra*.in, encrypted message,

e cra*.tXt, plaintext files of the same origin, as the encrypted message.

Output

For each encrypted message cra*. 1N, you should save the decrypted message in the file cra*. out .

Solution

Encryption program

In this section we are going to explain, how the encryption program cr ack. pas (crack. c) works. First we describe a
simple kind of cipher, known as the Caesar’s code. The process of encrypting the text with such a code is following.
Let us fix the encryption key—in the case of this cipher it is a single integer number k. The encrypted text results from
changing every single letter in the input text to letter which stands in the English alphabet (cyclic-formed) k positions
further. For example, if we have chosen number 4, as k then * I W SJ GSYWW' is the encrypted version of ' YES, OF
COURSE' . (Notice, that such characters as spaces and commas are unaffected). If we apply this algorithm with the key
—k to the text which has been encrypted in the way described above, it will give us back the original text. Therefore as
the result of coding the text * C'W SJ GSYWW ' with the key —4 (which means, that every letter is changed to the letter
standing 4 positions before it) we will obtain the primary text * YES, OF COURSE' .

The encryption algorithm which was implemented in the program cr ack. pas (crack. c) is a bit more complicated.
Very briefly we can say that it is a combination of ten various Caesar’s codes. More precisely, this cipher can be described
as follows. Let us omit for a while all the characters in our text which are not letters. We divide the input text into several
pieces, each consisting of ten letters, except for the last one which might be shorter. Now we form these pieces into an
array, such that one piece is represented by one row and they are set one under another. The following example illustrates
this:

I | TIWA|SIA|F|I|N|E
SIPIRII N\ GIM|O|R|N
I NG/ I NI T|IHIE|F|O
RIEISITIA|SIH|E|S|T
A/R|I T EIDO|UIT
The split text is: ‘IT WAS A FINE SPRING MORNING IN THE FOREST AS HE STARTED OUT.

18 C(Crack the Code

In the previous encryption algorithm the encryption key was a single integer number. Here the key is a sequence of ten
integers (ka,...,ki0). Encrypting a text with such a key consists of applying Caesar’s code to each column of the array
separately. It means that the first column, considered as a text, is being encrypted by the Caesar’s code with key k1, the
second column—uwith key ko, etc. For instance, coding the text from the example with the key (1,2,3,4,5,6,7,8,9,10)
gives the following array:

W o > =
O <|X|O

0nlal4la
—H O Tlo|<
Si< u|C|N
— X Z|Zm
— M0 n|x
CI<XINZ®
W oo 4dZ
wiE4dE4Ire)

B

The encrypted version is: ‘JV ZEX G MQWO TRUMSM TWAXJPJ MS ZOM OYSGVX FY OM
BDBTWII UBB!’

What remains now is to join all the rows of the modified array and put all the forgotten characters into appropriate places.
What we obtain is an encrypted version of the input text. (Note that the method described above can be explained in a
different way: the 1st, 11th, 21st, ... letter occurring in the text is encrypted by the Caesar’s code with key ki; the 2nd,
12th, 22nd, ... letter occurring in the text—with the key ko; etc. and at last 10th, 20th, 30th, ... letter occurring in the
text—uwith the key kio. The characters which are not letters are unaffected—Ilike in the Caesar’s code).

Methods of cracking the code

First let us consider methods which enable one to decrypt a message which is known to have been encrypted by Caesar’s
code. We will see later, that some of these methods can by easily applied to the case of the cipher which is used in our
task.

The simplest method is to consider all values from the interval [0, 25] as a value of the key. Considering other values
is unnecessary, because using the key k gives the same result as using the key of value equal to the remainder of the
division of k by 26—the total number of letters in the English alphabet. This remainder obviously belongs to the interval
[0,25]. In case the text is written in some natural language and its length is more than a few characters, it is quite certain
that for exactly one value of the key we obtain some text which does make sense. Because of the abovementioned small
number of various keys, it is possible to verify ‘manually’ which key is the right one. However this method cannot be
used effectively in the case of messages encrypted by the second kind of cipher. In that situation we should guess not
one, but ten numbers. It doesn’t seem that it is possible to guess every key separately using ‘manual’ verification, because
guessing the first number of a ten-number key deciphers only every tenth letter of the text. The decoded part of the text
surrounded by 90% of the coded one couldn’t be easily seen to be deciphered correctly (in contrast with the situation,
where a one-number key deciphers 100% of letters in the text). Verification is easy only if we try to decipher the whole
message by choosing all ten elements of the key. Nevertheless there are 26° combinations to check, therefore manual
verification of all these cases is impossible.

Let us then show other methods. We make an assumption that we have at our disposal some plaintext as well as a
message which is believed to be encrypted by Caesar’s code and to have the same origin as the first one. We wish our
methods to find the key (at this time automatically) which deciphers the given message. These methods are based on
the fact that in a natural language the frequency of occurrence of each letter of the alphabet is different. For instance in
English the frequencies are as follows:

Letter(s) Frequency of occurrence
E 11%
T 9%
A 8%
I, O S 7%
J, K QX Z less than 1%

Hence, if the plaintext is in English then E should be the most common. So it follows that if J is the most common letter in
the encrypted message, we may suppose that the key 5 had been used (because J stands 5 positions further than E). In this
case the key —5 = 21(mod 26) should be used for decrypting the message. This method does not always give the correct
solution. Let us consider a situation, where some two letters occur with similar frequencies (e.g. E and T in English).
If the encrypted message is not too long it may happen that T appears more often than E. A message like that would be
deciphered incorrectly. For example, if the encrypted message is * ZNOY OY G YZGZKSKTZ' then Z appears the most often
and it would be decoded as E, giving the message ' ESTD TD L DELEPXPYE' , which certainly doesn’t make sense. In fact
Z should be decoded as T which would give the answer ' TH'S | S A STATEMENT .

Crack the Code

Let us try to find a better method of deciding whether a given key is the right one. It will be convenient to introduce
the following definitions:

e p;j — frequency of occurrence of i-th letter of alphabet in plaintext (i.e. p1 is related to letter A),
¢ i — frequency of occurrence of i-th letter of alphabet in encrypted message,

e P — sequence of numbers (p1, p2,- .., P2%s),

e Q — sequence of numbers (q1,02,.--,02),

o QW — sequence of numbers (g1, g™, ..., g26¥) obtained as a cyclic shift of the sequence Q k positions to the
left (i.e. Q©) = (44, 0s. ..., 026, 01,02, 03))-

The previous method was based on the examination carried out for one pair of indexes i, j for which the value p; is the
greatest among p1, P2, ..., P2s and the value q; is the greatest among g1,02,...,026. The key used for encryption was
expected to equal the number k, for which the maximum values in sequences P and Q(K) appear at the same position.

P[P, P [P

|

| LECHCY 9 |

Now the main idea is to choose such a sequence Q) among Q(@, QW ... Q(®) that it is the ‘closest’ to the sequence P.
In fact the previous method is an example of this kind of method. In that method two sequences were recognized as similar
if their maximum values appeared at the same position. What we are going to do now is to work out some better criterion
of deciding which sequence Q¥ is the closest to P. In order to do that we will find some function whose arguments are
two sequences and its value is a non-negative real number. We also demand that the value of such a function is close to
zero if and only if the sequences are close to each other in an intuitive sense. (In other words: we expect that this function
would be a measure of similarity of the sequences).
Let us consider the following example of such a function:

26
s(P.QY) = _;|qi<k> - pil- 1)

The function S(P,Q™)) recognizes sequences P and Q) as similar if the sum of differences between the corresponding
elements of these sequences is small. At first this function may seem to meet our expectations. Unfortunately, the
following example shows that such a definition of similarity of sequences has some faults.

For the purpose of simplification we shall consider three sequences which contain five elements.

P _ <£iiii>
19°19°19°19° 19
, (12 3 49
Q - <1_971_951_971_971_9>
, (23 4 9 1
Q - <1_971_951_971_971_9>

(Note that Q” is just a cyclic shift of Q’.)

S(P.Q) = (1+1+1+1+4)/19=8/19
S(P,Q") = (0+0+0+4+4)/19=8/19
As we can see the function S doesn’t distinguish Q" from Q” although intuitively it is obvious that Q’ is closer to P than
Q”-
By reason of the above example we should improve our definition of the function S. First we change formula (1) so
that it uses the symbol a; = w, which states the relative difference of gf and p; (relative to p;):
/ 2 |q/ - p|| 2
S(P,Q") = = iaj. 2
(P,Q) i;pl D i;pl [(2

Now we can see that S(P, Q’) can be interpreted as a weighted mean of a; with weight factors p;.

19

20

Crack the Code

Let us consider the following modification of (2):

26 .|2

S(P.Q) =§piai2:ZM.

pi)

Here S is just a weighted mean of the squares of a;. In this formula big relative differences between q; and p; influence
the whole sum much more than in the case of formula (2). R
Let us recall our latest example to check whether the function S works better than the function S:

Sequences Q' and Q” are the same as in the previous example.

~

S(PQ) =
S(PQ") =

(1/2+1/3+1/4+1/5+16/5)/19~ 4.48/19
(0+0+0+16/5+16/5)/19=6.4/19

As we can see our new function manages this example quite well. However there might appear some problems, when for
some i the number p; was very small, for example less than 1/10n (n is a number of letters used to calculate the sequence
Q, i.e. in the case of Caesar’s code it is a number of all letters in the encrypted text, and in the case of the second kind of
cipher it is about 10% of the total number of letters). Then it is quite likely that the value q;(¥) (where k is the key which
has been used for encrypting) won’t be close to pj, because of a small number of letters (small relative to 1/p;) used for
calculating g). (It is a general problem — we can’t approximate the probability of some rare event if we perform only a
small number of experiments in order to do that). Therefore we wish this kind of components of the sum (see formula (3))
not to influence this sum too much. The solution is to put several letters into one group and to treat them as a single
symbol. E.g. in English each of the letters J, K, Q X, Z appears very rarely, but the frequency of occurrence of J, K, Q X
and Z together may be big enough. Certainly, it causes some modifications of sequences P and Q. We can imagine that
other elements p27 and g7 would be added to the sequence P and Q respectively and that appropriate elements would be
removed from these sequences (e.g. elements related to letters J, K, Q X, Z). The number p27 would be a sum of p; which
have been removed from P and g7 would be an analogous sum of some g;. (For the implementation details see the source
code of the program cr a. pas).

Now it is easy to apply the idea described above in order to crack the code which is used by the program cr ack. pas
(crack. c). We consider each column of an array (see subsection ‘Encryption program’) separately. For the i-th column
we calculate the sequence Q and choose such a number k; that the value of §(P, Q™)) is minimal. After all that we should
get the key (kg,kz,...,kip). All it takes now is to code our ciphered message with the key (—ki, —ka,...,—kio) in order
to obtain the deciphered version of the message.

About statistical test X2

What we have finally obtained in formula (3) is a formula for so called statistics of the statistical test x2. The most
common application of this statistical test is to verify whether some random variable (e.g. height of a human body)
has a probability distribution similar to some given probability distribution (e.g. Gaussian distribution). In our task the
probability distribution of the random variable was represented by the sequence Q¥ and the given probability distribution
was represented by P.

Data sets
Five data sets were used to score the contestants’ solutions. It should be easy to see that a small number of letters in the

encrypted message (or in the plaintext file) may cause some statistical methods to give incorrect results. Therefore test
cases with a small number of letters in their files can be more difficult to solve than others.

No test case | lettersincra*.in | lettersincra*.txt
1 891 460
2 1412 1422
3 7422 1756
4 404 170
5 225 100

Task by Solution description by
Ville Leppanen Tomasz Walen

Postman

A country postman has to deliver post to customers who live in villages as well as along every road connecting the villages.

Your task is to help the postman design a route that goes though every village and every road at least once—the input
data are such that this is always possible. However, each route also has a cost. People in the villages wish that the postman
visit their village as early as possible. Therefore, each village has made the following deal with the post: If the village i
is visited as the k-th different village on the tour and k < w(i), the village pays w(i)—k euros to the post. However, if
k>w(i), the post agrees to pay k—w (i) euros to the village. Moreover, the post pays the postman one euro for each road
on the tour.

There are n villages, numbered form 1 to n. The post is located in village number one, so the route should start and
end in this village. Each village is placed on the crossing of two roads, on the crossing of four roads, or there is a road
going through the village (i.e. there are 2, 4, or 8 roads going out of each wvillage). There can be several roads connecting
the same villages or a road can be a loop, i.e. connect a village with itself.

Task

Your task is to write a program that:
e reads the description of the villages and the Toads connecting them, from the input file P0S.in,

o designs such a route that goes through each village and road at least once and mazimizes the total profit (or minimizes
the loss) of the post,

e writes the result to the output file pos. out .

If there are several possible solutions, your program should output just one of them.

Input

In the first line of the input file POS. i N, there are two integers n and m, separated by a single space; n, 1 <n < 200, is
the number of villages and m is the number of roads. In each of the following n lines there is one positive integer. The
i+ 1-th line contains w(i), 0 <w(i) <1000, specification of the fee paid by the village number i. In each of the following
m lines there are two positive integers separated by a single space—uvillages connected by consecutive roads.

Output

Your program should write one positive integer k, the length of the route, to the first line of the output file P0S. out . The
following line should contain k + 1 numbers of consecutive villages on the route v1,va,...,v¢41, separated by single spaces,
with v1 = vk = 1.

Example

For the input file pos.in:

6 7 7

’ 10
7

4

10

20

5 0

: PR G
21

4 5

36

16

13

22 Postman

the correct result is the output file p0S. out :
7
15421631

Solution

The solution of this task is a little bit tricky. The main observation is that the total profit/loss does not depend on the
route chosen. Suppose that we have computed some postman’s route, such that every edge is visited at least once,
VigsVig, .., Vi, Vig, | < m, mis the number of edges. Let k(j) be the number of different villages visited before the first
visit to village number j. Then, the profit can be described by the following formula.

n | n n
profit = Z (w(j)—k(j))— le = Zw(i) + Zk(i) —I
j= i= i=

=1

Since the route should include every village, the sequence k() is a permutation of the set {1...n}, we can write:

profit = _iw(i)Jr n(n2+) —1

For the given test data, every part of this equation except | is constant, so the total cost depends on the length of the

chosen route, and not on the order in which the villages are visited. The value | is always grater or equal to m, so the

maximal profit equals 3, w(i)+ M —m. So we have to find a route of length m, which includes every edge exactly

once. Luckily for us, for such graphs as given in the problem description, such a route can always be constructed.

Solution of the task will go along the following schema:
e read the input data,
e compute a route which traverses each edge exactly once (such a route is called an Euler route),

e write the computed route.

Euler route

Euler route is a very old and well known problem of the Graph Theory, it was posed in the XVIII century by a famous
mathematician L. Euler.

Definition

An Euler Route of a connected graph G = (V, E) is a cycle that traverses each edge of G exactly once. Graph G does not
contain a vertex of degree 0.

Img. 1. Example graph with marked Euler route: (a,b,c,d,e,c,f,b,ef,a).

Theorem

The Euler Route can be constructed if and only if the following conditions are satisfied:
o the degree of each vertex is even,
e it is possible to construct a path between every pair of vertices.

If a graph satisfies these conditions, it is called an Euler graph.

Postman 23
Proof
It is clear that if one of the above conditions is not satisfied, we cannot construct an Euler route:

e If itis not possible to construct a path between some pair of vertices, it is also impossible to construct a cycle which
traverses every edge (the graph is divided into more than one distinct component).

e Ifthereisav eV such that deg(v) is odd, it is also impossible to construct an Euler cycle. In any cycle the number
of edges entering a vertex is always equal to the number of outgoing edges, so the degree of any vertex should be
even.

The aforementioned conditions are sufficient—the following algorithm proves it.

Algorithm
The algorithm is based on two facts:

o for agiven cycle in G, if we remove it from G, it is still possible to construct an Euler cycle in the remaining graph
(or graphs). This comes from the fact that removing a cycle from G decrements the degrees of some vertices by
even numbers, so all the necessary conditions are still satisfied,

e for given two distinct cycles cq, ¢z with at least one common vertex, it is possible to construct a new cycle ¢
containing all the edges from c1, cz. This can be done by inserting the cycle c; into the cycle ¢; at the common

vertex.
C1 Y Co

Img. 2. Merging two cycles.
This gives us the following pseudo-code:
e find any cycle in the graph (for example, using DFS),
e remove from the graph the edges belonging to this cycle,

e compute an Euler route for the remaining graph (or subgraphs if removing the edges divides the graph into more
than one component),

e merge the computed cycles into one cycle and return it.

More careful implementation gives us the following algorithm:

1: procedure Euler-Route(start);

2: begin

3. for v € adj(v) do

4. if not marked(start,v) then begin
5 mark_edge(start,v);

6: mark_edge(v,start);

7 Euler—Route(v);

8 Result.Push(start,v);

9: end

10: end

Where Result is a stack containing the edges of the Euler route. Running time of this algorithm is O(m -+ n), because
every edge is traversed only once; we need O(m) additional memory for marking edges.

24 Postman
Tests

Ten tests were used during the evaluation of contestants’ solutions. They are briefly described below.

no | n | Remarks

1 7 | simple random test

2 | 10 | small random test

3 | 20 | ‘ladder’ like test with some additional random edges
4 | 40 | random test

5 | 100 | loop

6 | 100 | random test

7 | 120 | ‘flower’ like test (4 loops connected in 1 vertex)
8 | 150 | large random test

9 | 200 | ‘ladder’ like test

10 | 200 | large random test

Task by Solution description by
Adam Malinowski Marcin Sawicki

Knights

We are given a chess-board of the size n xn, from which some fields have been removed. The task is to determine the
mazimum number of knights that can be placed on the remaining fields of the board in such a way that no two knights check

each other.
X X
X X
S
X X
X X
Fig. 1: A knight placed on the field S checks the fields marked with .
Task

Write a program, that:
e reads the description of a chess-board with some fields removed, from the input file Kni .in,

o determines the mazimum number of knights that can be placed on the chess-board in such a way that no two knights
check each other,

e writes the result to the output file Kni . out .

Input

The first line of the input file KNi . i N contains two integers n and m, separated by a single space, 1 <n < 200, 0 <m < n2;

n is the chess-board size and m is the number of removed fields.

FEach of the following m lines contains two integers: x and y, separated by a single space, 1 < x,y < n—these are the
coordinates of the removed fields. The coordinates of the upper left corner of the board are (1,1), and of the bottom right
corner are (n,n). The list of the removed fields does not contain any repetitions.

Output

The output file Kni . out should contain one integer (in the first and only line of the file). It should be the mazimum
number of knights that can be placed on a given chess-board without checking each other.

Example

For the input file kni .in:

32

11

33

the correct result is the output file kni . out :
5

Solution

Graphs

Certainly, each reader is familiar with the following definition: a graph is an ordered pair G = (V,E), where V is an
arbitrary set whose elements are called vertices and E is a set of unordered pairs of elements of V—the edges of G (thus
an edge is a connection between two vertices).

Most of you probably also know that a bipartite graph is such a graph that its set of vertices V can be represented as
a disjoint union of two sets, V = X UY, XNY = 0, where all edges have one end in X and the other in Y. Bipartite graphs
are often represented as ordered triples G = (X,Y, E), though they also fulfill the usual definition of a graph.

26 Knights

A graph (on the left) and a bipartite graph (on the right). The points represent the graphs’ vertices and the lines represent the
edges.

Independent set of vertices

For any graph G = (V,E), we can pose the following question: what is the maximal number of elements of a subset | CV
such that no two elements of | are connected by an edge? (Such a set is called an independent set of vertices.) This
problem corresponds to a situation where the edges represent an exclusive choice among the vertices: one of them might
be selected, but not both. It is exactly what we have in our problem: if we build a graph whose vertices are fields of the
chess-board and edges represent all possible single moves of a knight, then we have to calculate the maximal cardinality
of an independent set of vertices.

Please note that the graph obtained is a bipartite one, since a knight always jumps from a white field to a black one
and vice-versa.

10

11

An example 4 x 4 chess-board with severa fi elds removed and the corresponding bipartite graph of knight's moves.

The problem of a maximum independent set has its twin: minimum vertex cover. In this problem, we need to find the
minimal cardinality of a set C of vertices such that each edge is ‘covered’ by at least one element of this set, that is at least
one end of each edge falls into this set. It is an easy exercise to show that a complement of a vertex cover is an independent
set and vice-versa, hence a complement of a minimum vertex cover is a maximum independent set. This means that if a
graph has n vertices, n = |[V|, then || = n— |C|, where C is the minimum vertex cover and | is the maximum independent
set.

It is a well-known fact that the problems of the maximum independent set and of the vertex cover for arbitrary graphs
are NP-complete, hence it is not known how to solve them in a polynomial time, or even if it is possible or not. For
further information on this topic see e.g. [1]. However, we have already mentioned that we only consider bipartite graphs,
not arbitrary ones. Luckily, in this case there exists a sufficiently fast solution. To find it, we need to learn a bit about
matchings.

Matching

Finding the maximum matching is another graph problem of great importance. In a graph G = (V,E), a matching M is a
subset of E such that no two different edges belonging to M have a vertex in common. The problem is of course to find
the maximal number of elements of a matching in a given graph.

An example of amaximum matching in a bipartite graph.

In a bipartite graph, there exists a connection between the maximum matching M, minimum vertex cover C and the
maximum independent set I. It turns out that the cardinality of the maximum matching exactly equals the cardinality of

Knights

the minimum vertex cover, [M| = |C|, hence |I| = [V | — |M|. This equality, known as the ‘Hungarian theorem’ (by Konig
and Egervary), will be discussed later. Now, let us concentrate on finding the maximum matching.

Finding the maximum matching in general graphs can be done in time O(n5/2). The algorithm is by Even and Kariv
and is described in [2]. However, for bipartite graphs we know a much simpler and at least equally fast algorithm, namely
the Hopcroft-Karp algorithm. Let us present it briefly.

Augmenting path

Consider any non-maximum matching M in a bipartite graph G = (X,Y,E). If a vertex is not matched, i.e. it is not an
end of any of the edges belonging to M, than we shall call it free. Since G is bipartite, every path in this graph has even
vertices in X and odd in Y, or vice-versa. An alternating path is a loop-free path in G starting at a free vertex in X and
such that every even edge in this path belongs to M (hence every odd edge does not). If it also ends in a free vertex in 'Y,
we call it an augmenting path.

An observant reader could have already guessed where the name of an augmenting path comes from. If we exchange
matched and unmatched edges along an augmenting path, we obtain a matching that has one more edge.

A >

< >

An augmenting path in a bipartite graph.

Of course, if a matching is a maximum one, there are no augmenting paths. Luckily, the opposite also holds: if there
are no augmenting paths, we have the maximum matching. (This fact is known as Berge’s theorem and can be proven
e.g. by considering the “‘exclusive or’ of a maximum matching and a matching that has fever elements.) This leads us to
an algorithm for finding a maximum matching: search the graph for augmenting paths as long as there are any. If we use
the breadth first search (BFS) method to find the shortest augmenting paths, then the duration of the entire computation
would be O(n(n+m)), where n = [V| and m = |E|%, since BFS takes O(n+ m) steps and the size of the matching (that is,
the number of augmenting paths found) is of course not greater than 3. In our case, the arity of each vertex is 8 or less,
hence we have at most 40000 vertices and 160000 edges. It leads to approximately 6.4 - 10° steps.

The Hopcroft-Karp algorithm

The idea of the Hopcroft-Karp algorithm is to enlarge the matching not by a single shortest augmenting path, but at once
by the maximal set of vertex-disjoint augmenting paths of the shortest possible length. (Please note that by the maximal
set we mean such a set of augmenting paths that no other augmenting path of the same length is disjoint with its members,
so the set cannot be extended by adding any path, which does not imply that the set has the maximal possible number of
elements.)

How to do it effectively? Assume G = (X,Y,E) is the graph, M is the matching to be augmented and | is the length of
the shortest possible augmenting path. First, use BFS to build an auxiliary directed graph H as the union of all alternating
paths of length less or equal to | (not necessarily disjoint). Note that if x € X andy € Y are free in M, then a path from x
toy in H is an augmenting path of length I (if only it exists). So now we can repeat the depth first search (DFS) in H to
find out consecutive augmenting paths and enlarge M using each of them in turn. Since we mark out every visited vertex,
the paths found are pairwise disjoint indeed.

The BFS phase takes at most O(n+m) time units. DFS is repeated many times, but it examines each vertex at most
once, so it also takes O(n+ m) steps to accomplish. Hence we can have many augmenting paths at the same price as only
one! Moreover, it can be proven that in such case we only need O(,/n) repetitions of the above procedure to obtain the
maximum matching. Hence the total computation time is O(y/n(n+m)). In our case, where n can be as large as 40000,
it leads to a solution 200 times faster than the straightforward approach presented before.

‘Hungarian theorem’

Now we already know how to solve the problem ‘Knights’, since we only need to calculate the size of the maximum
independent set. It equals |V | — [M|. However, what would we do if we were to actually determine the independent set of
maximal size, i.e. the positions of the knights on the chess-board?

1Please note that we use the standard notation: n for the number of vertices and mfor the number of edges in agraph, though n and m have adifferent
meaning in the problem ‘Knights'.

27

28 Knights

Let us assume that we have a bipartite graph G = (X,Y,E). Let M be the maximum matching. Consider the union A
of all sets of vertices of alternating paths in G. (Recall that an alternating path starts in a free vertex of X and first follows
an unmatched edge, then a matched one etc.) It turns out that C = (X \ A) U (Y NA) is the minimum vertex cover. Indeed,
one can prove that C is a vertex cover (the proof is rather straightforward from the definition). Then we notice that no free
(unmatched) vertices belong to C (this would contradict the fact that M is a maximum matching) and that for every edge
e € M, at most one of its ends belongs to C. Hence |C| < |M|. But every edge belonging to M has to be covered, and since
these edges have no vertices in common, then there must be at most |M| vertices in any vertex cover, in particular in C.
Hence C is a minimum vertex cover, and its complement | is a maximum independent set.

On the left—a graph with a maximum matching and only one alternating path. The set A of its vertices is denoted by circles.
In the middle—a minimum vertex cover of the graph. On the right—a maximum independent set.

Other solutions

All reasonable solutions of the problem are based upon the ‘Hungarian theorem’ and lean on finding the maximum
matching. We have already mentioned the simple algorithm for maximum matchings of the complexity O(n(n+m)). If
we give up finding the shortest augmenting path, we can use DFS instead of BFS to find the paths and use the first path
found. Due to high regularity of the graph in our problem, if we always start our search at the vertex next to the last vertex
visited in the previous search, we have a good chance to find a really short augmenting path in just several steps. It is
much cheaper than performing an exhaustive search of the entire graph to make sure that our path is as short as possible.
In fact, this simple heuristic often works as fast as the sophisticated Hopcroft-Karp algorithm or even faster, and could
score a maximal number of points.

Tests

There were 10 input sets, among which only 3 were really large. Each of these tests was worth equal number of points.
The following table describes briefly all of them (please note that now n and m denote the length of the edge of the
chess-board and the number of fields missing respectively, hence |V | = n? —m).

no n m [V| | description
1 2 0 4 | full 2 x 2 board
2 2 1 3 | 2 x 2 board with one field missing
3| 10 67 33 | 10 x 10 board, random fields missing
4 20 200 200 | 20 x 20 with regular cuts along two edges and
some random fields missing
5| 28 276 508 | as the previous one, 28 x 28
6| 40 913 687 | as the previous one, 40 x 40
7| 80 4233 2167 | asthe previous one, 80 x 80
8| 180 14632 17768 | asthe previous one, 180 x 180
9 | 200 4 39996 | 200 x 200 with four fields near the corner missing
(in the shape of letter L)
10 | 200 10100 29900 | 200 x 200, random fields missing

Task by Solution description by

Wolfgang Pohl Tomasz Walenh

Mars Maps

(This task was inspired by task ‘Atlantis’ of the Mid—Central European Regional ACM—ICP Contest 2000/2001.)

In the year 2051, several Mars expeditions explored different areas of the red planet and produced maps of these areas.
Now, the BaSA (Baltic Space Agency) has an ambitious plan: they would like to produce a map of the whole planet. In
order to calculate the necessary effort, they need to know the total size of the area for which maps already exist. It is your
task to write a program that calculates this area.

Task

Write a program that:
e reads the description of map shapes from the input file mar.in,
e computes the total area covered by the maps,

e writes the result to the output file mar. out .

Input

The input file W8I . | N starts with a line containing a single integer N (1 <N < 10 000), the number of available maps. Each
of the following N lines describes a map. Each of these lines contains four integers x1, y1, 2 and yp (0 <xq <2 < 30 000,
0<y1<y2<30000). The values (x1,y1) and (x2,y2) are the coordinates of, respectively, the bottom-left and the top-
right corner of the mapped area. Each map has rectangular shape, and its sides are parallel to the x- and y-azxis of the
coordinate system.

Output

The output file MAr. out should contain one integer A, the total area of the explored territory (i.e. the area of the union
of all the rectangles).

Example

For the input file mar.in:

2
10 10 20 20
15 15 25 30

the correct result is the output file mar. out :
225

30

Mars Maps
Solutions

The task ‘Mars Maps’ has many possible solutions. As we shall see, some of them are very simple. We will present them
starting with a simple but inefficient one and we will gradually improve the solutions’ efficiency.

Solution 1

Let us suppose, that we have an array of Booleans of size 30000 x 30000, and we treat it as a big 2D grid. We can
‘draw’ all the given maps on it and then count the area covered. This is a straightforward solution and it can be easily
implemented. However, it requires a huge amount of memory (almost 100 MB) and processing power (time complexity
can be as big as 300002 (n +2)). It can be very ineffective even for small tests (e.g. those with maps covering almost the
whole area). Figure 1 shows a sample array generated by this solution.

Fig. 1. Solution 1, drawing on the grid.

Solution 2

How can we improve the previous solution? The memory consumption should definitely be smaller and the solution
should work faster (at least) for small tests. The main observation is that not all coordinates are used in the computations.
The improved solution consists of two steps: The first step is creating a grid consisting of used coordinates only (i.e.
coordinates of maps’ corners), it is presented in fig. 2. The second step is exactly the same as in the previous solution: we
draw the maps on the prepared grid. This time the computation of the covered area is slightly different. In the previous
solution, the grid consisted of square fields 1 x 1. In this case, the area of each field of the grid has to be computed from
the parameters of the grid.

This solution is slightly better, it does not depend on the range of the coordinates, but of course for large data it is still
inefficient. The time complexity of this solution is O(n®) (since the ‘compressed” grid might be as large as n x n).

Fig. 2. Solution 2, compression of coordinates.

Solution 3

We can further improve the efficiency using a technique called ‘scan—line sweeping’. It is based on scanning objects
(maps) on a plane in certain order. In the previous solutions, the order was not important, but here we will make use of
processing maps with an increasing x coordinate.

We can scan the plane of the Mars’s surface with a vertical line (often called a ‘brush’), from left to right. Each time
the line encounters the left edge of some map, we mark it on the brush, and when the right edge is encountered we unmark
it. For effective implementation, we need a fast method of computing the total length of marked edges on the brush.

Between subsequent edge encounters, the total length of the sum of marked edges is constant, so the map’s area in this
segment can be easily computed—it is BrushLength - Ax, where Ax is the distance between x coordinates of subsequent
edges encountered by the brush (see Fig. 3).

Mars Maps

O

Fig. 3. Scan-line solution, the dashed line shows the previous position of the brush, the solid line shows the current one, and
the darker area shows the maps' arealying between the two consecutive maps' edges.

Data structures

For the aforementioned algorithm, we need a data structure which implements the following operations:
e MarkEdge(a,b)—marking the edge [a, b], on the brush,

e UnmarkEdge(a,b)—unmarking the edge [a, b] on the brush (we can assume that such an operation always succeeds,
i.e. the brush contains the given edge),

e TotalLength—computing the total length of the sum of all marked edges.

Let us denote by max_c the maximal value of the coordinates (in our case max_c = 30000). From the problem specifica-
tion, a and b are integers in the range [0...max_c|.

The simplest implementation of the above data structure, is an array of integers of size [0...max_c]|. Each element of
this array corresponds to one unit interval, and is equal to the number of marked edges containing it. The implementation
of MarkEdge(a,b) and UnmarkEdge(a,b) is fairly simple: elements of the array in the range [a,b — 1] need only to be
incremented or decremented by one. However, such an implementation is quite slow. In the pessimistic case it requires
O(max_c) operations. Nevertheless it is an improvement compared to the previous solution, however it can be improved
even further.

The way to do it is to use balanced trees. We can build a tree over the range [0..max_c] in such a way that its leaves
correspond to one unit intervals, while the internal nodes correspond to the intervals being the sum of the intervals of their
descendants.

Fig. 4. An example of abalanced tree for the range [1..10].

Each node contains two values: Length—the length of the covered part in the node’s corresponding interval, and
Count—the number of edges covering it.

The TotalLength operation returns simply the value of Length of the tree root. The other operations are a bit more
complex. We try to avoid operating on small intervals: each time we discover an operation that would cause changes in
all the leaves of a node’s subtree, we only need to change the values in the node.

More precisely, we follow the following schema:

e For agiven edge [a,b] we start from the root (node number 1).

e Letv be the current node, corresponding to the interval [I,r], and let v/ and v" be its direct descendants, correspond-
ing to the intervals [I,m] and [m+ 1,r] respectively (where m = (I +r) div 2). We may encounter the following
cases:

31

32

Mars Maps

— the interval [I,r] is fully contained in [a,b]—in such a case we modify the values in the current node v and
return to its parent,

— the intervals [I,r] and [a, b] intersect—if [I,m] and [a,b] intersect, we descend to the left child v/, if [m+1,r]
and [a,b] intersect, we go to the right child v”. It may be necessary to go in both directions, however it will
not happen too often as we will see later on. After visiting the children we return to the parent.

— the intervals [I,r] and [a,b] do not intersect—this situation is impossible, since we never descend to such a
node.

Moreover, each time we return from a child node it is necessary to recompute the value of Length from the values stored
in the child nodes. Computing the Length value is rather straightforward: if the node’s Count is positive, then the Length
value is equal to b + 1 — a, otherwise it equals v’.Length +v”.Length.

We can implement these operations in the following way:

1: procedure modifylnterval(node, yO, y1, node_y0, node y1, delta)

2: begin

3. if (y0 < node_y0) and (yl1 > node_yl) then begin

4: v[node]=v[node]+delta;

5. end else begin

6: m:= (node_y0+node_y1) div 2;

7: if (yO<m) then modifylnterval(node*2, y0, y1, node_yO, m, delta);
8: if (m<yl) then modifyinterval(node*2+1, y0, y1, m+1, node_y1, delta);
9: end

10: correct(node, node_yO, node_y1);

11: end;

1: procedure correct(node, node_y0, node_y1);

2: begin

3. if (v[node]>0) then sum[node] := 1+node_yl-node_yO0;

4: else begin

5: sum[node] := O;

6: if (node_yO<node_y1) then

7: sum[node] := sum[node*2]+sum[node*2+1]

8: end;

9: end;

We still have to prove that the procedure modifylnterval runs in time O(logmaxc). It may happen that a descent to
both the left and the right node will be needed, but it causes some additional cost only when it happens for the first time.
After that first ‘split’, every following one is very simple: the cost of processing one of the children is constant, since we
return to the parent immediately after descending to it (see fig. 5). The time complexity comes from the observation that
the total height of the tree is equal to O(logmaxc).

Fig. 5. Theresult of adding the interval [2,8], visited nodes are coloured gray, and those with modifi ed values are darkened.

The Algorithm

Mars Maps

Having implemented an effective data structure, the main algorithm might be written in the following way:

1: last x = 0;
2. for e = GetLeftmost(Edges) do begin

3:

(x, ¥0, y1, sign) := e;

4: area := areatsum[1]*(x-last_x);

5. last x = x;

6: if (sign = +1) then

7: modifyInterval(1, yO, y1, 0, max_x, +1);
s: else

9: modifyInterval(1, y0, y1, 0, max_x, —1);
10: end,;

The variable Edges contains an ordered sequence of vertical edges of Mars Maps; it is ordered by the ascending x
coordinate and (for the edges with the same coordinate) by the sign (+1 for left edges, —1 for right edges).
Since we have the data structure which implements the procedure Modi fylnterval with complexity O(logmaxc), and

in the whole run of the algorithm it will be called exactly 2n times, then the total time complexity is O(nlogmaxc).

Tests

Ten test data sets were used during the evaluation of the contestants’ solutions. They are briefly described below.

no n Remarks

1 4 simple test

2 7 simple test

3 13 image composed of rectangles with text: ‘BOI’
4 100 | random rectangles

5 200 | snail like shape

6 | 1000 | random rectangles

7 | 2000 | large rectangles placed in X shape
8 | 5000 | many vertical and horizontal bars
9 | 10000 | two groups of squares

10 | 10000 | rhombus shape

33

Task and solution description by

Krzysztof Onak

Teleports

Great sorcerer Byter created two islands on the Baltic See: Bornholm and Gotland. On each island he installed some
magical teleports. Each teleport can work in one of two modes:

® receiving—one can be teleported to it,

e sending—anyone who enters the teleport is transfered to the specific destination teleport on the other island, provided
that the other teleport is in the receiving mode.

Once, Byter gave his apprentices the following task: they must set the teleports’ modes in such a way, that no teleport is
useless, i.e. for each teleport set in the receiving mode there must be at least one teleport sending to it, set in the sending
mode; and vice versa, for each teleport set in the sending mode, the destination teleport must be set in the receiving mode.

Task

Write a program that:
e reads the description of the teleports on both islands, form the input filetel .in,
e determines the appropriate modes for the teleports,
e writes the result to the output file tel . out .

If there are several possible solutions, your program should output just one of them.

Input

In the first line of the teat file tel .in, there are two integers m and n, 1 < m,n < 50 000, separated by a single space;
m 1is the number of teleports on Bornholm, and n is the number of teleports on Gotland. Teleports on both islands are
numbered from 1 to m and n respectively. The second line of the file contains m positive integers, not greater than n,
separated by single spaces—the k-th of these integers is the number of the teleport on Gotland that is the destination of
the teleport k on Bornholm. The third line contains analogous data for the teleports on Gotland, i.e. n positive integers,
not greater than m, separated by single spaces—k-th of these integers is the number of the teleport on Bornholm that is
the destination of the teleport k on Gotland.

Output

Your program should write two lines describing the modes of the teleports, respectively, on Bornholm and Gotland, to the
output file tel . out . Both lines should contain a string of, respectively, m and n ones and/or zeros. If the k-th character
in the string is 1, then the k-th teleport is in the sending mode, and if it is 0, then the corresponding teleport is in the
receiving mode.

Example

For the input filetel .in:

45 Bornholm Gotland
3525 1
4 4 413 1
2
2
3
3
4
4

the correct result is the output filet el . out :

36 Teleports

0110 Bornholm Gotland
10110 1
1
2
2
3
3
4
4
5
Solution

Let us start with an easy observation. Sometimes input data determine modes of some teleports even when there are many
possible solutions (we will see later that a solution always exists). For example if there is a teleport on one of the islands,
for which there is no teleport on the other island that could send anything to it, we know that such a teleport must be in
the sending mode, otherwise it would be useless. Teleport no. 1 on Gotland in the example input data (fig. 1) is just such
a device.

Bornholm Gotland

Fig. 1. Teleports in dashed circles are forced to be in the sending mode due to the lack of teleports that could send to them.

Moreover its destination teleport (no. 1 on Bornholm) must be in the receiving mode due to the requirements of the task.
Besides, it is entailed that no teleport in the solution can send to device no. 3 on Gotland, so it must be in the sending mode
and so on. Certainly, this simple fact and its further consequences will not help us to find a solution in every situation.
See figure 2 for an example.

Gotland Bornholm

o]

[—?

»—03

4

Fig. 2. None of the teleports is determined to be in a specifi c mode.

There are four teleports on each island and for each of them there exists a device sending to it. Besides, there are exactly
two solutions—all teleports on Gotland are in the sending mode and all on Bornholm in the receiving mode and vice
versa. It means that none of the teleports is determined to be in a specific mode. In spite of this our previous observation
is not useless.

Teleports
Algorithm

Let us try a simple method. First we set all teleports on Bornholm in the receiving mode, and all teleports on Gotland in
the sending mode. Of course it does not have to be a solution, but we will try to repair it by looking for teleports for which
there is no device sending to it as we have done before while analyzing the problem. Here is the algorithm:

1: set all teleports on Bornholm in the receiving mode;
2: set all teleports on Gotland in the sending mode;
3: while there is a useless teleport x in receiving mode on Bornholm do

4: begin

5 switch x to sending mode;

6: switch destination teleport of x to receiving mode;
7. end

Why does it terminate? With every step of the loop in lines 3-7 the number of teleports in the receiving mode on
Bornholm decreases, and because it is always finite, at some point there will be no device x as specified in line 3.

Why is a state of teleports in row no. 8 a solution? There may be four groups of teleports and we will show that
devices in each group cannot be useless.

e Receiving mode, Bornholm—the algorithm has stopped, so due to the condition in the fourth line none of them is
useless.

e Sending mode, Bornholm—the destination teleport of every such a device has been switched to the receiving mode
(row no. 6) and its state has not been altered anymore.

e Receiving mode, Gotland—a device is in this mode, because it was a destination teleport for some teleport on
Bornholm that has been switched to the sending mode, so it is not useless.

e Sending mode, Gotland—destination teleports of theses devices were initially set in the sending mode and have not
been altered.

This proves the correctness of the algorithm. Now we have to implement our solution choosing appropriate data structures.

Implementation

Our program has to write to the output file a number of characters proportional to the total number of teleports on both
islands. It means that the time complexity of our solution cannot be better than ©(n+ m). Later on, we will see that such
a complexity can be achieved. We will use the same names as in the example program.

At the beginning we read numbers n, m and destinations of all teleports—we store them in the array dest so that we
can get the destination device for a specific teleport in constant time. In the array sendi ng we keep the modes of teleports.
It is initialized according to lines 1-2 of the algorithm. For each teleport on Bornholm we count for how many devices on
Gotland it is a destination and store this information in the array i nDegr ee.

Then, we prepare an empty structure zer oDeg which provides the following operations: inserting an item into the
structure, getting out any of the items previously inserted and testing if the structure is empty. Each of the operations
should take constant time. This structure can be implemented for example as a stack or a queue.

We put all the teleports on Bornholm that are currently useless, these are the ones for which i nDegr ee is zero, into
zer oDeg. All the steps done so far require @(n+m) time.

Now, the loop in lines 3-7 starts. Checking if there is a useless teleport on Bornholm is simply checking if zer oDeg
is empty. If it is, we have finished, otherwise we take a teleport number from zer oDeg. Let us call this teleport x. We
switch x to the sending mode and we set its destination device y in the receiving mode. Next we decrease i nDegr ee for
the destination z of the teleport y. If z becomes useless, it means that i nDegr ee for z has reached 0 and we put z into
zeroDeg. Itis clear that every execution of the loop takes O(1) time, and because it happens at most m times, we know
that the time complexity of this part of the algorithm is O(m).

Hence, the program needs ©(n 4+ m) memory and time and according to the previous observation it is optimal.

Inspiration

For an arbitrary set X let us denote by 2 (X) the set of all subsets of X. Now let us define for arbitrary sets X, Y and a
function f : X —Y afunction f : 2(X) — 2(Y) as:

f(A) = {f(a)lac A}
forall A C X.

37

38 Teleports

As an author of the problem I can reveal that it was inspired by the theorem called ‘Banach’s lemma’. It says what

follows:

For arbitrary functions f : A— B and g : B — A there exist sets A;, A C A and B1, B> C B such that

e AfUA=A A1NA =10,
e B1UB>,=B,B1NB, =0,
o f(A1) =By,
d(Bz2) = Ax.

Speaking less formally it says that we can divide both A and B into two parts (respectively A1, A2 and B1, B») such that
applying f to A; we get exactly B1 and applying g to B, we get A, (see figure 3).

f

Fig. 3. The presentation of the idea of Banach’s lemma.

We can treat Bornholm and Gotland as sets including teleports. Then relation origin-destination is a function in both
directions. What is more, we have proved Banach’s lemma for finite sets A and B. It is much harder to show that it is true

even when both sets are infinite.

Tests

There were 10 tests used to evaluate contestants’ programs. Most of them were random and a few were prepared against

some simple heuristics and programs with worse complexity.

No m n
1 10 10
2 100 107
3 1000 1005
4 1000 1000
5] 10006 | 10000
6 | 10000 | 10000
7 | 50000 1000
8 1000 | 50000
9 | 50000 | 49987

10 | 50000 | 50000

Bibliography

[1] Thomas H. Cormen, Charles E. Leisereson, Ronald L. Rivest. Introduction to Algorithms. The MIT Press, 1990.

[2] S. Even, O. Kariv. An O(n?®) algorithm for maximum matching in general graphs. In Proc. 16th Annual Symp. on
Foundations of Computer Sciece, pages 100-112. IEEE, 1975.

39

40 BIBLIOGRAPHY

ISBN 83-906301-8-4

